Scaling of muscle fibres and locomotion.

نویسنده

  • L C Rome
چکیده

To reconcile the scaling of the mechanics and energetics of locomotion to recent data on the scaling of the mechanics of muscle fibres, I have extended the theory of Taylor and colleagues that the energetic cost of locomotion is determined by the cost of generating force by the fibres. By assuming (1) that the cost of generating force in a fibre is proportional to V(max) (maximum velocity of shortening) and (2) that, at physiologically equivalent speeds, animals of different body sizes recruit the same fibre types, this extension quantitatively predicts the scaling of the energetics of locomotion, as well as other observations, from the scaling of V(max) of the muscle fibres. First, the energetic cost of locomotion at physiologically equivalent speeds scales with Mb-0.16, where Mb is body mass, as does V(max) of a given fibre type. However, the energetic cost at absolute speeds (cost of transport) scales with Mb-0.30, because small animals must compress their recruitment order into a narrower speed range and, hence, recruit faster muscle fibre types at a given running speed. Thus, it costs more for small animals to move 1 kg of their body mass 1 km not only because a given muscle fibre type from a small animal costs more to generate force than from a large one, but also because small animals recruit faster fibre types at a given absolute running speed. In addition, this analysis provides evidence that V(max) scales similarly to 1/tc (where tc is foot contact time) and muscle shortening velocity (V), in agreement with recent models. Finally, this extension predicts that, at physiologically equivalent speeds, the weight-specific energetic cost per step is independent of body size, as has been found empirically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ontogeny of mantle musculature and implications for jet locomotion in oval squid Sepioteuthis lessoniana.

We examined the relationship between mantle muscle structure and mantle kinematics in an ontogenetic series (5-85 mm dorsal mantle length) of oval squid, Sepioteuthis lessoniana. Thick filament length increased during growth in the mantle muscle fibres that power jet locomotion (i.e. the circular muscles). The thick filament length of both the superficial mitochondria-rich (SMR; analogous to ve...

متن کامل

The scaling of myofibrillar actomyosin ATPase activity in apid bee flight muscle in relation to hovering flight energetics.

For all types of locomotion, the overall efficiency with which chemical energy is converted into mechanical work increases with increasing body size. In order to gain insight into the determinants of the scaling of overall efficiency, we measured the scaling of the rate of ATP utilisation during cyclical contractions using glycerinated fibres from the dorsolongitudinal flight muscle of several ...

متن کامل

Motor units are recruited in a task-dependent fashion during locomotion.

Muscle fibres have a range of contractile properties from fast to slow. Traditional understanding of muscle fibre recruitment suggests that the slower fibres within a mixed muscle are used for all contractions including those at rapid speeds. However, mechanical arguments predict that some locomotor tasks are best performed by solely the faster fibres. Motor recruitment patterns can be indicate...

متن کامل

The effect of activation level on muscle function during locomotion: are optimal lengths and velocities always used?

Skeletal muscle exhibits broad functional diversity, despite its inherent length and velocity constraints. The observed variation in morphology and physiology is assumed to have evolved to allow muscle to operate at its optimal length and velocity during locomotion. Here, we used the variation in optimum lengths and velocities that occurs with muscle activation level to experimentally test this...

متن کامل

معرفی روش استفاده از سیگنال مکانومیوگرام در ارزیابی عملکرد عضلات

  Background and aims   Recordings of electrical activity in the muscle and surface electromyography (EMG) have been widely used in the field of applied physiology. In parallel to  recording of the EMG, the detectable low-frequency vibration signal generated by the skeletal  muscle has been known and well documented. As the nature of the signal has been progressively   revealed, the term of mec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 168  شماره 

صفحات  -

تاریخ انتشار 1992